X-rays digital radiography in CMOS Tech (FCT)

X-ray chip structure in CMOS technology

CMOS digital dental X-rays microsystem

Lab-on-a-chip

LAB-ON-A-CHIP for uric acid

Microspectrometer for UV, visible and IV with digital output and bus interface

Chip-size antennas, RF CMOS 0.18 um

Glass (12x12mm²)

Chip-size antennas II

Alimentação

Peltier effect for cooling Applications

Peltier effect

A current flowing through the junction of two materials generates / removes thermal energy

7 Solid state cooling devices

Inside a Peltier device

TE^{*} Elements (Pellets) – Bismuth Telluride / Antimony Telluride

Good materiais for Peltier devices

- High Seebeek coefficient α (V/°C)
- Low electrical resistivity p (Ohm-m)
- Low thermal conductivity λ (Wm⁻¹K⁻¹)

 $ZT = \frac{\alpha}{\alpha \lambda} T$

n-type: Bi₂Te₃ – Bismuth telluride p-type: Sb₂Te₃ – Antimony telluride

Fabrication technique

- 2 crucibles (Bi/Sb and Te)
- Power controlled by PID
- Constant evaporating rate
- Two oscillating crystals
- Substrate heated
- Deposition very slow: 2 µm/h

Thermal co-evaporation

Seebeck effect Applications

Thermoelectric generators in space High reliability

Citizen Eco Drive Thermo Powered from body heat

Thermoelectric microsystem

